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We study at the microscopic level the dynamics of a one-dimensional, gravita-
tionally interacting sticky gas. Initially, N identical particles of mass m with
uncorrelated, randomly distributed velocities fill homogeneously a finite region
of space. It is proved that at a characteristic time a single macroscopic mass is
formed with certainty, surrounded by a dust of nonextensive fragments. In the
continuum limit this corresponds to a single shock creating a singular mass den-
sity. The statistics of the remaining fragments obeys the Poisson law at all times
following the shock. Numerical simulations indicate that up to the moment of
macroscopic aggregation the system remains internally homogeneous. At the
short time scale a rapid decrease in the kinetic energy is observed, accompanied
by the formation of a number ~^/~N of aggregates with masses -m ^/N'.
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1. INTRODUCTION

The model of gravitationally interacting sticky particles has been proposed
by Zeldovich,(1) and then extensively studied in connection with the problem
of large scale structures in the universe (for a recent review see ref. 2). The
effort has been concentrated on the study of solutions of the corresponding
self-consistent hydrodynamic equations in order to understand how small
density fluctuations arround a homogeneous state could induce observed
mass distributions.
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In this paper we analyze the dynamics of a one-dimensional system with
an initial homogeneous mass distribution filling only a finite region of space.
As the one-dimensional gravitational interaction is confining, the whole
system will eventually form a single mass. We start from the microscopic
dynamics of N point particles with randomly chosen initial velocities. Then
we determine the evolution of the statistical distribution of masses formed by
merging at binary sticky collisions. It turns out that a macroscopic mass is
formed after a characteristic finite time with probability one, surrounded by
a cloud of non-extensive fragments. In the continuum limit, this corresponds
to a solution of the system of mass and momentum conservation laws, show-
ing a single shock at the characteristic time. We emphasize that energy is not
conserved in this process. We thus find not only a simple realization of a
particular solution belonging to the general class studied in ref. 3, but also a
detailed description of the statistics of masses in the course of time.

As mentioned above, the system is composed of point particles attract-
ing each other with forces proportional to the product of their masses,
and independent of the interparticle distance. The corresponding «-body
Hamiltonian has the form

where y is the gravitational constant, and mi, xi, pi denote the mass, the
position and the momentum of particle i, respectively.

The Hamiltonian (1) with an appropriate value of n defines the
dynamics of the system in the time intervals separating binary collisions.
The collisions, which are supposed to be perfectly inelastic, are responsible
for the mass aggregation. When two neighbouring particles i and j meet,
they merge instantaneously forming a single mass (mi + mj) which con-
tinues the motion acquiring at the moment of impact the momentum
(pi + pj). The complete dynamics, involving the aggregation process, is
thus subject to the mass and momentum conservation laws. On the other
hand, the number of particles decreases monotonically in the course of
time, each collision replacing two particles by one.

In a previous work(4) we concentrated on the determination of the
probability P N ( t ) of merging before time t of the initial N-particle dust into
a single body (we denote here by N the number of particles at time t = 0).
The rigorous results have been obtained by assuming a uniform equidistant
configuration of the initial identical masses m, characterized by a constant
mass density



Statistics of Mass Aggregation in Self-Gravitating 1D Gas 179

where a is the distance between the nearest neighbours. The velocities of
the particles were supposed to be uncorrelated at t = 0, distributed according
to some probability density (/>(v). In particular, the Gaussian law

has been considered in a detailed way.
It has been found that for a macroscopic amount of matter N -> oo the

probability P N ( t ) of such a complete merging vanished for times shorter
that the characteristic time

More precisely, expressing the probability PN(t) in terms of the relevant
time variable

we derived a general (independent of the form of distribution (/)),
remarkably simple result

from which the above assertion followed.
The exact form of the monotonically increasing function P N ( i ) was

then determined in the limit of a continuous initial mass distribution. One
way of defining this limit is given below:

However, it has been stressed in our concluding remarks that the
really relevant question was that of the macroscopic aggregation, which is
quite different from the complete merging into a single mass. Indeed, from
the physical point of view the important event is certainly that of the
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formation of a macroscopic mass, representing a finite fraction of the total
mass Mtot = Nm in the continuum limit (7). And this event, according to
numerical simulations and preliminary analytical results, seemed to occur
in the immediate vicinity of the characteristic time t*, which could not be
predicted from the knowledge of the probability PN(T). The main object of
the present study is to clarify this point by analyzing the evolution of the
mass distribution in the course of time. In other words, we determine here
the statistics of the mass aggregation providing a proof that the mass
density in the continuum limit (7) becomes singular after a finite time t*,
and takes the form of the Dirac S centered on a position of a single
macroscopic mass.

The concentration of the mass density on a single point at time t* can
be simply demonstrated in the special case of a static initial condition,
when all the particles at t = 0 are at rest: (/>(v) = S(v). Indeed, suppose that
the initial positions of the particles are Xj(0) = ja, j=1,2, . . . ,N. Then,
at time t>0, the distances between neighbouring particles shrink to
(a — myt2), so that all the particles merge simultaneously at the moment
t = t* = ^/a/ym. The initial mass density uniformly distributed within the
interval Q<x<Na is given by

where 6(x) is the Heaviside unit step function. For times 0 <t <t*, it
acquires in the continuum limit (7) the value

Equation (8) implies the expected result

It is shown in the present paper how the above result can be generalized
to the case of a random (Gaussian) initial velocity distribution (3), reflecting
the creation of a macroscopic body at t = t*. Moreover, we derive an analytic
formula for the distribution of the remaining nonextensive microscopic
masses. Computer simulations supplement our analytic approach on two
points. They permit to determine the scaling laws in the approach to the
continuum limit and to predict the mass distribution before t*, a problem
which remains open for the mathematical analysis.
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Before closing these introductory remarks let us recall that the system
of mass and momentum conservation laws governing the dynamics of one-
dimensional aggregation has been recently studied from the point of view
of the existence of global weak solutions.(3) In their proof the authors have
analyzed the dynamics in terms of the center of mass trajectories in much
the same way as it had already been done in our previously published
papers.(4,5)

2. EVALUATING THE MASS DENSITY

At the initial moment t = 0, N identical masses m start the motion with
uncorrelated velocities, distributed according to the probability density
</>(v). Particle j begins to move from the point ja, j= 1, 2,..., N. In order to
study the evolution of the mass density one has to determine the proba-
bility density for finding at time t > 0 a mass M at point X. The dynamics
of the system implies that M results from aggregation of some cluster of
neighbouring initial masses, and that X must coincide with the position of
the center of mass of the cluster at time t. So, let us consider a n-particle
cluster

In accordance with the dynamics induced by the Hamiltonian (1) its
center of mass Xn

+, follows the trajectory

with velocity

The n particles (10) merge into a single mass nm before time t if and
only if

The inequalities ( 1 3 ) express the requirement that for any partition of the
n-particle cluster (10 ) into subclusters (j+ 1, j + 2,..., j + r) and (j + r+ 1,
j + r + 2,...,n) the centers of mass of the subclusters cross before time t
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leading to the total merging. In order to guarantee that a single mass
Mn = nm is actually observed at the point ( 1 1 ) we have still to rule out the
possibility of disturbance which would cause collisions with surrounding
masses, built up from the initial clusters

and

The unperturbed aggregation of the n-particle cluster (10) occurs if and
only if

We continue to use here the notation Xn
+, to denote the position of the

center of mass of the n-particle cluster composed of particles (i+ 1, i + 2,...,
i + n).

The inequalities (16) express the fact that the center of mass trajec-
tories of the s-particle clusters

stay to the left of the trajectory X n
+ l ( t ) up to time t, and thus do not cross

it. Similarly, the inequalities (17) exclude crossing of the trajectory of the
aggregating mass Mn with the center of mass trajectories on which evolve
masses (15) initially to the right of it. The necessary and sufficient character
of the conditions (16) and (17) follows from the remark that the dynamics
excludes more than one crossing between the particle trajectories.

The probability density for finding at time t > 0 a mass M at point X
with velocity V can now be written in the form



Statistics of Mass Aggregation in Self-Gravitating 1D Gas 183

where < • • • > denotes the mean value with respect to the initial velocity
distribution

Multiplying formula (18) by M, and integrating over all possible masses
and velocities we arrive at the expression for the mass density

In writing Eq. (20) we took into account the absence of correlations in the
velocity distribution (19). As a result the mean value appearing in Eq. (18)
factorized out into the product of three averages corresponding to disjoint
groups of velocity variables ( v l , . . . , v j ) , ( v j + 1 , . . . , v j + n ) and ( v J + n + 1 , . . . , v N ) .
The calculations greatly simplify in the case of the Gaussian form (3) which
will be used in the sequel. In order to show the kind of problems one has
to deal with let us consider in Eq. (20) the integration over the velocities
( v j + 1 , vj+2,..., vj+n) of the aggregating n-particle cluster. Using Eq. ( 1 1 ) we
find

By introducing new integration variables
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one eventually rewrites formula (21) in the form

Here

is the probability of merging of an isolated n-particle cluster into a single
mass before time t, with

It is exactly this quantity which was the main object of our previous
study.(4) In particular the important relation (6) has been derived therein.

In quite a similar way one can analyze the other two averages appearing
in Eq. (20). We give the results here only for t = t* (or T = 0), as our aim is
to find the mass density at this characteristic moment. A straightforward
calculation yields then the formulae

where

As in ref. 4, us is interpreted as a Brownian path at discrete times s = 1, 2,...,
and the traditional notation Ew[ • • • ] for the Wiener measure has also
been used here. Taking into account the relation (6) we eventually find that
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the mass density at the gravitationally imposed finite time scale t* in the
continuum limit (7) equals

For symmetry reasons one can expect the macroscopic aggregation to
take place at the central point of the originally uniform system. And
indeed, it turns out that the mass density (29) becomes singular at this
point in the continuum limit (7). In order to prove it we shall use now the
Sparre Andersen theorem (Section XII.7 in ref. 6) which permits to deter-
mine the generating function4

One finds (see the discussion in Section 5 in ref. 4)

It follows that

Moreover, it follows from (32) that (setting B0(u) = 1)

which implies

4 Bn(u) here is the same as Bn in (42) of ref. 4 with the variable u playing the role of r. Note
that there is a minus sign missing in the equalities (46) and (48) of ref. 4.
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Thus the Eq. (29) simplifies in a remarkable way to the form

The main conclusion from Eq. (34) is that at the moment t* the mass
density concentrates at the central point of the system X=Mtot/2p. Indeed,
if f(X) is a continuous function,

leading to

In particular, the formula

shows that the mass density at X=Mtot/2p (36) tends to infinity as ^/N.
Equation (35) is the main result of this Section. It tells us that even in

a nonstatic case where the aggregating particles have initially a Gaussian
velocity distribution the macroscopic mass is formed at the gravitational
time scale t = t*. From this point of view the situation does not differ from
the static problem discussed in Section 1. However, the relation (6) clearly
shows that the probability of complete aggregation at t = t* is still zero.
This puts forward the question of the distribution of those masses which
have not joint the central macroscopic body at t = t*. The statistical distri-
bution of this leftover dust, representing a nonextensive amount composed
of microscopic fragments, is discussed in the next section.

3. STATISTICAL DISTRIBUTION OF MASSES

We first write down the probability distribution
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for finding, at time t, an ordered configuration of k aggregates at positions Xt,
(Xl<X2< ••• <Xk) with velocities Vi and masses Mn = mni.

The aggregates originate from consecutive initial clusters made of
n1:,...,nk initial masses m and are found at the center of mass of these
clusters

with velocities

The relations (37) and (38) generalize (11) and (12) to the splitting of the
N equidistant initial particles into k consecutive clusters (here, i= 1,...,k
does not index lattice sites, but the clusters themselves). In (37) and (38),
Vn. is the sum of the initial velocities of the particles belonging to the ith
cluster and

is the difference of the masses to the right and to the left of this cluster
responsible for the force acting on it.

The distribution uN is obtained by averaging the set of kinematical
constraints required for the realization of the desired event

We always have Sk=1ni
 = N, and the quantity & n ( t ) represents the

constraint (to be elaborated below) needed to ensure that the ith aggregate
forms before time t. Both Xn.(t), Vn.(t) and &„.(t) are known expressions
of the initial velocities and < • • • > denotes as before the mean value with
respect to the distribution (19), so uN can be calculated in principle. Notice
that we did not include further constraints saying that the particles belong-
ing to the adjacent clusters i and i+ 1 do not perturb each other before t.
This is not needed since the very fact that all initial particles in the (i + 1 )th
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cluster are found right of those in the ith cluster at time t already implies
that no particles of the two groups have collisioned before t (otherwise a
double crossing between trajectories would have occured, which is not
possible in our dynamics).

To simplify the discussion, we shall merely be interested in the mass
distribution by integrating out positions and velocities

The conditions for forming the ith aggregate before t are the same as (13),
i.e., X r

H i ( t ) > X n i
l > ~ r ( t ) , r = 1,2,...,ni - 1, where Xr

n.(t) is the position of the
subcluster of the first r particles in the ith cluster

Here the velocities of the initial particles in this cluster have been simply
labelled vl, v2,..., vn. and VB =£ni=1 vs. Hence, as in (21), the constraint is

We see from (37) that the factor

in (41) depends only on the initial center of mass velocities V n / n i of the
clusters. Since the initial velocity distribution factorizes, we can perform the



Statistics of Mass Aggregation in Self-Gravitating 1D Gas 189

integration independently for each cluster, except for the variables Vn/n,
that are coupled through (44). Introducing for each cluster the change of
variables (22) one obtains as in (21)-(24) that the ith cluster contributes
to the total integration on velocities in (41) as

Taking (44) and (45) into account in (41) and setting U,= Vn /X ^/~n~, leads
to the final result

The first factor is the probability of formation of independent aggregates,
whereas the second factor represents the correlations introduced between
them by the gravitational forces.

We now draw some important conclusions from the formula (46). We
say that the ith aggregate is macroscopic if the number of its constituents
nt = nN, 0<n<1, is a non vanishing fraction n of the total number of
initial particles as N-* oo; its mass is then Mi = mni = nMtot.

(i) Macroscopic Mass

According to the form of the mass density (35) at t = t*, it is clear that
there can be only one macroscopic aggregate for t > t*. Let us recover this
result using (46). The arguments of the 0-functions in (46) are denoted by

The integral in (46) is carried out on the domain & of the variables Ui

defined by wii+]^0. Suppose that the masses of the two clusters j and
j + f become macroscopic, i.e., nj--» oo, nj+,-* oo with mnj = M j>0,
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mnj+f = M j + f > 0 and n{ remains finite for i^j,j + f. Then as N-»oo,

The relation (48) together with the conditions W, , + 1>0 for r>0 imply
U,+ 1 >0,..., U J + f _ l >0, but (49) implies also UJ+(_l <0; thus the integra-
tion domain ,@ shrinks to zero as N -> oo and the corresponding probability
vanishes. The argument is the same when more than two masses become
macroscopic.

We calculate now the probability to have one macroscopic mass, say
nj = N-'£1^j ni, holding the other aggregates ni, i= j finite, defined by

Notice that in the macroscopic limit, the mass Mn. = Mtot — m Zf^y ni

becomes infmitesimally close to the total mass: Mn.-> Mtot. We make two
observations on the probability P n (T) , r>0 . If n is fixed

since this amounts to let m = Mtot/N-> 0 in (24). If n = N — q with q a fixed
integer

where

is the probability of merging of the total number of particles into the single
mass Mtot. This is precisely the function determined in the proposition
found in Section 5 of ref. 4, because again m(N—q) = Mtot — mq -> Mlot as
JV->oo.5

5 In this proposition the quantity M to t/2A was set equal to one.
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Finally, as W-» oo the arguments W', ,+ 1 (47) tend to

When (51) , (52) and (54) are taken into account in (46) (changing also U,
into —(U i), one finds that the limit (50) is

with

The interpretation of (56) is clear: the factor Qj-1(C*-y) is the probability
to find, left (right) of the macroscopic mass, j (k — j) aggregates made of
a finite number of initial masses, that we call now fragments. We shall
show in paragraph (ii) below that the probabilities (55) sum up to one.
Therefore the only configurations that can occur after /* consist of a single
macroscopic mass together with a dust of such fragments. One should
notice that non macroscopic pieces of matter of the order mNv, 0< v< 1,
do not appear after t*.

( i i) Statistics of Fragments

The probability to have a configuration of exactly k bodies after t*
(i.e., one macroscopic mass and k— 1 fragments) is
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After the change of variables yt = ((UJ^fn,) — (Mtot/2/l) T), one finds from
(56)

where A(i) is the function defined in (53). Hence from (55), (57), (58) and
(53) one obtains the result

As claimed above, the nk(t) satisfy the normalization relation

The distribution of the number k — 1 of fragments is Poissonian for all
times t>t*. We find therefore that A(r) appearing in (53) has the inter-
pretation of the mean number of fragments. A(r) tends to zero as a
Gaussian when T -» oo and diverges as —2 ln((Mtot/2/l) T) when T -> 0 (see
Eq. (52) in ref. 4).

As a particular exemple, we write down from (55) and (56) the proba-
bility of survival of a fragment of size n

where erf is the error function.
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The general position and velocity dependent distributions (40) for
t>t* can also be written down more explicitly in the macroscopic limit.
In particular, one has u1 (Xt F, Mtot ;t) = d(Xl-( Mtot /2p)) 6( V,) P( T). The
macroscopic mass is found at rest at the position Mtot/2p without fluctua-
tions, as expected. More generally, there are Gaussian small probabilities
to find fragments far away from this point.

So far we have given a full description of the state after t*: here the
structure is simple since the weight of typical mass configurations is given
by the set of distributions (45) with k finite. When t<t* the situation is
more complex. Indeed, we have

since necessarily at least one of the ni tends to infinity and we know then
from (6) that for r^O, Pni(r) ^ 1/n -> 0 (all the other factors in (46) are
bounded by 1). Hence there remain always infinitely many aggregates as
N-> oo, and the weight of typical configurations will be given by the distri-
butions ^(n!,..., nk; t\ k -> oo, involving infinitely many bodies. Computer
simulations indicate that after a short transient time, typical configurations
consist of approximately ^/N aggregates, each of them having a mass of
the order m ^/N. Thus we may conjecture that the distributions in this
range, i.e., £^^_ ^/uf(n,,...,nk; t) with £~v/yv, should have a non
vanishing limit as N-* oo.

As far as the density (20) is concerned, we anticipate that it converges
for t < t* to an absolutely continuous function, namely the uniform density
(8) as in the static model. This would be consistent with the numerical
observation that after a short time during which most of the initial kinetic
energy is dissipated by inelastic collisions, the subsequent evolution is
dominated by the gravitational forces. The result of simulations is discussed
in the next Section. Analytic proofs of these conjectures would complete
the study of the dynamical phase transition that occurs at t* between a
spatially extended and an aggregated phase of matter.

4. NUMERICAL SIMULATIONS

In this section we present the results of numerical simulations performed
to determine the rate of formation of macroscopic masses for a system with
a finite number N of particles evolving according to the model described
above. In particular, we analyze the scaling to the continuum limit of the
probability P n ( t ) for the formation of a macroscopic mass nNm, 0<n<1,
before time t. We also study the time evolution of the kinetic energy.



Numerical simulations on this model are particularly simple, compared
with their counterparts in higher dimensions, because the equations of
motion can be analytically integrated between successive collisions. The
simulation then reduces to keeping track of the particle masses, coordinates
and velocities created in successive collisions.

In going to the continuum limit while keeping the density constant,
different scalings of the initial conditions are possible. Here, for reasons of
numerical accuracy, we increase the number of particles N, while keeping
the distance between them constant: a = 1, and also putting m = 1, so that
p = M/L = nm/na= 1. Further, we choose initial velocities with a Gaussian
distribution of variance /t = N/2. This procedure is equivalent to the con-
tinuum limit considered in the preceding sections (see (7) and also ref. 4).

In Fig. 1 we show the mass formation probability PnN(t) for N = 1000
as a function of time, averaged over 10000 initial configurations, with
n = 0.1, 0.2,..., 0.9, 0.99, 1.0 from left to right.

Note that PnN(t) clusters around the Heaviside function for n < 1, while
the probability of total mass aggregation n = 1 follows the separate limiting
curve given by (53).

In order to study the scaling of P n ( t ) curves as a function of the
particle number N, we obtained the results for the initial values N = 10 • 2',
r = 0, 1,..., 9, averaged over 1000 initial configurations. Fixing 77 = 0.5, we
display in Fig. 2 the probability curves for increasing numbers of initial
particles. They tend to the Heaviside function as N-> oo.

Having in view a quantitative study of this scaling we consider the
time deviation \tJ,(N) — t*\ for increasing N, where t n s ( N ) is the time at
which the probability PnN acquires the value ft, i.e., P n ! N ( t n i ( N ) ) = ft,
ft = 0.25, 0.5, 0.75, 77 = 0.5.

Fig. 1. Mass formation probability P n ( t ) , N= 1000, n = 0.1, 0.2,..., 0.9,0.99, 1.0 from left to
right.
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Fig. 2. Mass formation probability P 0 . 5 ( t ) , N= 10.2', r = 0, 1,..., 9, from left to right.

Figure 3 reveals the power law

The same behavior holds also for other values of n.
In order to get a deeper understanding of the dynamics of aggregation

we analyze the evolution of the kinetic energy E N i n ( t ) . If we started from a
static initial configuration, we would simply find a parabolic law

Fig. 3. Log-log plot of | t n ( N ) - t * | , for /? = 0.25, 0.5, 0.75 from up to down.
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Fig. 4. Normalized kinetic energy as a function of time for N=10.2', r = 0, 1,..., 9. The
parabolic limit curve represents the normalized kinetic energy of the continuous static initial
configuration.

In Fig. 4 the ratio E N m ( t ) / E N . s t a t ( t * ) has been plotted. This ratio
approaches the normalized parabola as N-> co. One can look at the local
minimum of the curves as corresponding to the time scale of almost total
dissipation of the kinetic energy due to initially numerous inelastic colli-
sions. For N^ co, the location of the minimum approaches the initial
moment t = 0 according to the power law N -l/4. Hence in the continuum
limit the system gets instantaneously cooled down and the subsequent
evolution is dominated by gravity.

We also observe that at the time when the kinetic energy attains its
minimum:

(i) the average size of the formed masses scales as ~m^/N
(ii) the velocity distribution remains Gaussian with an effective

standard deviation xe,r ~ IN ~l/4.

It strongly suggests that before t* the density of mass in the continuum
limit should also coincide with that of the static model (8).

Finally, in order to study the sensitivity of our results to variations of
the initial distributions, we have led the same simulations for interparticle
distances following a Poissonian distribution and a Gaussian initial
velocity distribution. We confirmed that all the results presented above
remained identical, indicating a certain generality of the initial kinetic
energy dissipation process.
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